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Charging and Discharging of Insulating Particles on
the Surface of a Grounded Electrode
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Abstract—The aim of the present paper is to analyze the
corona charging of millimeter-size insulating disks, as well as
their discharging when they are no longer exposed to the action
of an external electric field. The experiments were carried out
on a roll-type electrostatic laboratory separator, equipped with
a wire-type corona electrode, simulating the actual charging/dis-
charging conditions in an industrial unit. Disks of various sizes
were charged on the surface of the roll electrode, then the high
voltage supplied to the corona electrode was turned off and
the particles were collected in a Faraday pail, connected to
an electrometer. The charge measurements were performed at
various time intervals from high-voltage turn-off. In this way,
the charge decay could be recorded and the discharge process
fully characterized. The measured data show that the discharge
process depends on the nature, size, and shape of the particles,
as well as on the contact conditions between the particles and
the grounded roll electrode. These data could guide the design
of the electrostatic separation experiments that precede any new
industrial application of this technology.

Index Terms—Charge decay, charge measurements, corona
charging, electrostatic applications.

I. INTRODUCTION

THE physical phenomena related to the ionic charging of in-
sulating particles [1]–[6] have been extensively studied in

connection with the industrial application of several important
electrostatic technologies: precipitation of dusts, deposition of
powders, and separation of granular materials [7]–[12]. The most
widely used mathematical model of unipolar charging of parti-
cles was established by Pauthenier and Moreau-Hanot [1], who
considered single spherical particles moving freely in a uniform
externalelectric field ,whereuniformmonopolar spacecharge
with density exists. This is a model that can be accurate enough
for the electrostatic precipitators, as in most industry applications
the dust particles are larger than 2 m in diameter (thermal diffu-
sion could be neglected) and their volume concentration is low.

At high electric field strengths, the measured charge may be
smaller than the value given by Pauthenier’s formula, due to the
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Fig. 1. Charged insulating particles “pinned” on the surface of the grounded
electrode of a roll-type corona electrostatic separator. 1: grounded rotating roll
electrode; 2: corona electrode; 3: charged particles.

self-discharge effect [14], [15]. Similar observations were made
in the case of fixed or high-inertia particles [16], [17].

In the case of the electrostatic separation of granular solids,
where the particles to be charged form a more or less compact
layer on the surface of an electrode (Fig. 1), Pauthenier’s model
is no longer valid. This justified the studies carried out by the
authors on the unipolar charging of insulating particles, either
spherical or cylindrical in shape, in contact with the rotating roll
electrode of a corona-electrostatic separator [18], [19]. A nu-
merical method was proposed by Dascalescu et al. [20] for the
evaluation of unipolar charge acquired by single insulating par-
ticles near or in contact with an electrode, and the results were
in good agreement with the experimental findings in a roll-type
corona-electrostatic separator [20]. The reported computational
and experimental data clearly show that the charge imparted by
“ion bombardment” is higher in those cases.

Very few studies were performed on particle discharging in
contact with an electrode. Nevertheless, this phenomenon plays
an important role in the electrostatic separation process of gran-
ular materials. The electric image force that “pins” the granular
matter on the surface of the rotating roll electrode is proportional
to the residual charge carried by each of the particles. Therefore,
it is important to be able to estimate the rate at which this charge
vanishes in contact with the grounded electrode.

In an attempt to address this problem, the aim of this paper
is double: analyze the corona charging of mm-size insulating
disks at the surface of a rotating roll electrode, as well as their
discharging when they are no longer exposed to the action of
an external electric field. The experiments were carried out on
a roll-type electrostatic laboratory separator, provided with a
wire-type corona electrode, simulating the actual charging/dis-
charging conditions in an industrial unit.
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Fig. 2. Experimental setup; schematic representation (a) and physical
embodiment (b).

II. EXPERIMENTAL SETUP

A laboratory roll-type corona-electrostatic separator
(CARPCO, Jacksonville, FL) was employed for the experi-
mental study of particle charging and discharging. The unipolar
space charge was generated by a wire-type corona electrode,
located at a distance mm from the surface of the
grounded roll electrode and brought to a positive potential

or 25 kV (Fig. 2). An electrometer (Keithley Instru-
ments, Model 6514) was used to measure the charge of four
types of insulating particles:

Fig. 3. (a) Schematic representation of the four types of particles employed
in this experiment and (b) view of the corona charging experimental setup. 1:
corona electrode; 2: charged particles; 3: grounded roll electrode.

• type I, polyvinyl chloride disks of diameter
mm and height mm;

• type II, polyamide “disks” of diameter
mm and height mm;

• type III, polyamide “disks” of diameter
mm and height mm, av-

erage mass: 2.3 g;
• type IV, polyamide “disks” of diameter

mm and height mm, av-
erage mass: 6.5 g.

The catalog data of the bars in polyvinyl chloride from which the
type I disks were cut indicate a volume resistivity cm
and a dielectric constant 4. The polyamide disks were char-
acterized by a volume resistivity cm and a dielectric
constant 2.2.

The samples II–IV were obtained by classification from a
genuine polyamide granular material provided by a plastic
manufacturer. Types III and IV are cylinders terminated by
curved surfaces, as suggested by the schematical representa-
tions in Fig. 3. In order to obtain type II particles closer in
shape to a “standard” disk, glass paper was used to convert the
curved bases of genuine granules similar to those of types III
and IV into rather smooth planes.

In each experiment, one or several particles were placed on
the surface of the roll electrode, with their centers located in the
vertical plane defined by the corona wire and the axis of the roll
electrode, as shown in Fig. 2. They were subjected to a corona
field for 10 s. Then, the roll drive was turned on, at a speed

high enough to ensure a centrifugal force capable to throw
off the particles, to be collected in a Faraday pail connected to
the electrometer. The separator was also provided with a thin
metallic wire, the role of which was to remove the particles too
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Fig. 4. Charge Q of type—I particles as function of spacing d, for an applied
voltage V = 20 kV, and a distance s = 50 mm between the electrodes.

tightly “pinned” on the surface of the roll electrode. In some ex-
periments, after turning off the high voltage, the particles were
maintained in the same position for intervals of time varying
from s to 2 min. The ambient conditions were rather
constant throughout the experiments: the temperature varied be-
tween 19.1 C–21.3 C, and the relative humidity ranged from
38.6% to 41.8%.

III. RESULTS

In the first set of experiments, groups of three type I particles
were charged in the corona field generated by supplying the
wire electrode at kV. The study was carried out for
various distances between adjacent particles. The results are
given in Fig. 4, where each point was obtained by dividing the
measured charge by the number of new particles collected in
the Faraday pail at each experiment. In this figure, as well as in
Figs. 5–8, all measured results were marked with circles. The
dots appearing on them are the result of the superimpression of
the circles corresponding to several measured values that were
very close to each other.

The second set of experiments was designed for the study of
the discharging process of individual particles. The charge of
the particles was found to decrease with the discharging time

as shown in Fig. 5.
Type II particles were employed in the third set of experi-

ments, the results of which can be examined in Fig. 6. The data
measured during the other two sets of experiments, involving
respectively the particles of types III and IV, are represented in
Figs. 7 and 8.

IV. DISCUSSION

Particle charging and discharging phenomena are of
paramount importance to electrostatic separation processes.
Previous studies demonstrated that the proximity of other
bodies modifies the distribution of the electric field and hence
the conditions of corona charging of insulating particles, as
compared with the case when they are single in a uniform
electric field.

Fig. 5. Charge Q of type-I particles as function of discharging time t (the
particles were individually charged at an applied voltage V = 25 kV, and a
distance s = 50 mm between the electrodes).

Fig. 6. Charge Q of type-II particles as function of discharging time t
(the particles were charged by groups of three, for a spacing d = 0 mm, at
V = 25 kV, and s = 50 mm).

The data in Fig. 4 indicate that the charge of disk insulating
particles of radii on the surface of an electrode affected by a
corona field is smaller when they are spaced at a distance .
This result is in good agreement with the previously-reported
computed and experimental data regarding the corona charging
of cylindrical insulating particles [21].

From a practical point of view, this stresses the need to corre-
late the feed rate with the velocity of the roll electrode, so that to
ensure optimum charging conditions for all the particles passing
through the high intensity field zone of a corona-electrostatic
separator. The development of any new electrostatic separation
technology should take into account this aspect, as well as the
dynamics of particle discharging in contact with the carrier elec-
trode.

The charge of a type I disk reduced to 1/2 in about 2 s, or
less (Fig. 5). The polyamide employed in the experiments was a
better insulator than the PVC from which the type I disks were
made (its volume resistivity was about two orders of magnitude
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Fig. 7. Charge Q of type-III particles as function of discharging time t
(the particles were charged by groups of three, for a spacing d = 2mm, at V =

25 kV, and s = 50mm; the represented points are average values computed by
dividing the measured charge by the number of particles collected in the Faraday
pail).

Fig. 8. Charge Q of type-IV particles as function of discharging time t
(the conditions of the experiment are similar to those in Fig. 7).

higher). As a consequence, the charge decay for polyamide disks
(types II–IV) was much slower. Thus, 2 min after high-voltage
turn-off, the polyamide disks (sample II) preserved about 3/4 of
their initial charge, as shown by the data represented in Fig. 6.
This suggests the possibility of using the difference in charge
decay rate as a mean for separating the constituents of a gran-
ular mixture of insulating materials in contact with a grounded
electrode.

At same diameter, the disks in sample IV having a larger lat-
eral surface carry a larger amount of charge than those in sample
III, but the dynamics of charge decay seems to be the same: the
charge at 2 min after high-voltage turn-off is about 0.6 of the
initial value (Fig. 7).

The difference between the behavior of particles in sample II
and those in samples III and IV can be explained by the con-
tact conditions between the respective bodies and the grounded
roll electrode. This observation emphasizes the need of control-
ling the state of the surface of the insulating particles, as it may

significantly change the discharging conditions, and hence the
results of the separation process.

The dispersion of the measured charge values in the reported
experiments is due to several factors: the dispersion of particle
size, the nonuniformity of the corona generated by the wire elec-
trode, the state of the surface of the grounded electrode, the as-
pect of particle-electrode contact. These factors should be taken
into account when analyzing the feasibility of any new applica-
tion of electrostatic separation of granular mixtures.

V. CONCLUSION

The corona charging experiments carried out with mil-
limeter-size PVC and polyamide disks on the surface of
a grounded electrode point out several aspects that should
be considered in the design of new electrostatic separation
technologies.

1) The charge acquired by the insulating particles depends
on their shape and size, but also on their density on the
surface of the carrier electrode. The feed rate should be
chosen such that the material to form a uniform mono-
layer on the surface of the roll electrode, with particles
slightly distanced from one another.

2) The charge decay rate of a particle on the surface of a
grounded electrode depends on its volume resistivity. This
could be used for separating good and bad insulators from
a granular mixture of dielectric materials.

3) Homogeneity of particle size is a prerequisite for uniform
discharge conditions. An effective electrostatic separation
should be proceeded by the classification of the material
to be processed.

Researches are in progress to better characterize the particle-
electrode contact conditions and to quantify their effect on the
charge decay rate of insulating granules in roll-type corona-elec-
trostatic separators.
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